Phylogenomics of MADS-Box Genes in Plants — Two Opposing Life Styles in One Gene Family
نویسندگان
چکیده
The development of multicellular eukaryotes, according to their body plan, is often directed by members of multigene families that encode transcription factors. MADS (for MINICHROMOSOME MAINTENANCE1, AGAMOUS, DEFICIENS and SERUM RESPONSE FACTOR)-box genes form one of those families controlling nearly all major aspects of plant development. Knowing the complete complement of MADS-box genes in sequenced plant genomes will allow a better understanding of the evolutionary patterns of these genes and the association of their evolution with the evolution of plant morphologies. Here, we have applied a combination of automatic and manual annotations to identify the complete set of MADS-box genes in 17 plant genomes. Furthermore, three plant genomes were reanalyzed and published datasets were used for four genomes such that more than 2,600 genes from 24 species were classified into the two types of MADS-box genes, Type I and Type II. Our results extend previous studies, highlighting the remarkably different evolutionary patterns of Type I and Type II genes and provide a basis for further studies on the evolution and function of MADS-box genes.
منابع مشابه
Molecular Cloning and Analysis of Two Flowering Related Genes from Apple (Malus × domestica)
Apple (Malus×domestica Borkh.) is the fourth fruit in importance and Iran ranks fifth in apple production in the world. Longevity of juvenility in apple extends breeding cycles and makes its breeding a tough job. To alleviate this barrier via genetic engineering, the genes involved in flowering and floral development of apple and their function must be identified and characterized. Most of thes...
متن کاملEvolution and divergence of the MADS-box gene family based on genome-wide expression analyses.
MADS-box genes encode transcription factors involved in various important aspects of development and differentiation in land plants, metazoans, and other organisms. Three types of land plant MADS-box genes have been reported. MIKCC- and MIKC*-type genes both contain conserved MADS and K domains but have different exon/intron structures. M-type genes lack a K domain. Most MADS-box genes previous...
متن کاملGenome-Wide Analysis of the MADS-Box Gene Family in Brachypodium distachyon
MADS-box genes are important transcription factors for plant development, especially floral organogenesis. Brachypodium distachyon is a model for biofuel plants and temperate grasses such as wheat and barley, but a comprehensive analysis of MADS-box family proteins in Brachypodium is still missing. We report here a genome-wide analysis of the MADS-box gene family in Brachypodium distachyon. We ...
متن کاملComputational identification and analysis of MADS box genes in Camellia sinensis
MADS (Minichromosome Maintenance1 Agamous Deficiens Serum response factor) box genes encode transcription factors and they play a key role in growth and development of flowering plants. There are two types of MADS box genes- Type I (serum response factor (SRF)-like) and Type II (myocyte enhancer factor 2 (MEF2)-like). Type II MADS box genes have a conserved MIKC domain (MADS DNA-binding domain,...
متن کاملAn ancestral MADS-box gene duplication occurred before the divergence of plants and animals.
Changes in genes encoding transcriptional regulators can alter development and are important components of the molecular mechanisms of morphological evolution. MADS-box genes encode transcriptional regulators of diverse and important biological functions. In plants, MADS-box genes regulate flower, fruit, leaf, and root development. Recent sequencing efforts in Arabidopsis have allowed a nearly ...
متن کامل